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Summary of Progress 

During the period December 1,1986 - May 31,1987, progress was made 
in the following areas: 

1) Concatenated Codes Using Bandwidth Efficient Trellis Inner Codes. 

-4 paper summarizing our work on the performance of bandwidth effi- 
cient trellis inner codes using two-dimensional M P SK signal constellations 
in a NASA concatenated coding system has been submitted for publication 
to the IEEE Transactions o n  Communications [l]. These coding schemes 
achieve an effective information rate (information bits transmitted per unit 
bandwidth) at least double that currently used in NASA’s TDRS system. 
They also provide large coding gains, which make them desirable for use in 
high speed satellite communication systems. Implementations of an inner 
coding scheme similar to those proposed in [l] have been demonstrated at 
speeds up to 120 Mbps [2]. 

Using a soft decision Viterbi decoder for the inner code, we have shown 
in [l] that coding gains of 4dB @ and 6dB Q lo-’ can be achieved 
without bandwidth expansion using 16-state trellis coded 8 PSK modula- 
tion as the inner code and a length 255 Reed-Solomon (RS) outer code. 
With a modified Viterbi decoder for the inner code which passes some era- 
sure symbols to the outer decoder, a decoded bit error rate (BER) of 
with an erasure rate of can be achieved at an Eb/No = 5.5dB and 
only 10 %I bandwidth expansion. This paper [l] is included as Appendix A 
of this report. 

We have also continued our work on trellis coded modulation using 
multi-dimensional signal sets. A paper on this subject has been submit- 
ted to the IEEE Transactions o n  In format ion  Theory  [3]. A copy of this 
paper was included in our previous report. A talk on this subject was 
also presented at the 1987 Conference on Information Sciences and Sys- 
tems [4], and the Principal Investigator has been invited to give a lecture 
on multi-dimensional trellis coded modulation at the IEEE Information 

1 



1 

Theory Workshop, in Bellagio, Italy [5 ] .  
We are currently preparing two additional papers in this area for pub- 

lication [6,7]. One summarizes our work on multi-dimensional 16 PSK 
code constructions, while the other investigates the performance of multi- 
dimensional trellis coded modulation as inner codes in a concatenated cod- 
ing system. Copies of these papers will be included in a future report. 

2) Bounds on the Minimum Free Euclidean Distance of Bandwidth Efficient 
Trellis Codes. 

On a more theoretical note, a paper summarizing our work on lower 
bounds on the minimum free Euclidean distance of bandwidth efficient 
trellis codes has been submitted to the IEEE Transactions o n  In format ion  
Theory [8], and is included as Appendix B of this report. This paper proves 
achievable lower bounds on free distance for trellis codes and establishes the 
existence of good trellis coded modulation (TCM) schemes for a variety 
of signal constellations, including MPSK. These bounds can be used as a 
means of comparing the performance of various TCM schemes, particularly 

A weakness of this bound is that it is not tight at small constraint 
lengths, and we are currently working on a method of tightening the bound. 
Two additional papers are being planned, one on a tightened bound and 
the other on the basic structural properties of TCM schemes. 

2t k r g e  constr2ht !engths. 

3) Performance Analysis of Bandwidth Efficient Trellis Codes on Non- 
Uniform Channels 

Communication over real world channels, such as mobile satellite chan- 
nels, suffers from non-uniform disturbances that cannot be described by ad- 
ditive white Gaussian noise. One important such disturbance is the multi- 
plicative noise arising from multipath reception at the receiver [9]. Commu- 
nication channels suffering from multipath are known as Fbyleigh/R,ician 
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fading channels. 
We have begun an investigation of the performance of TCM schemes on 

fading channels. Our preliminary results indicate that bandwidth efficient 
trellis coding is feasible on such channels, but that the important design 
parameter is no longer the minimum free Euclidean distance. Two new pa- 
rameters, the “effective length” and the “minimum product distance” are 
more important. Intuitively, a good code in a nonuniform noise environ- 
ment should try to spread the “distance” between two codewords over all 
the branches over which the codewords differ. This is the same idea used 
in diversity transmission, which is usually employed on fading channels. A 
paper summarizing our preliminary results is included as Appendix C [IO] 
of this report. 
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Abstract  
High rate concatenated coding systems with bandwidth efficient 

trellis inner codes and Reed-Solomon (RS) outer codes are investi- 
gated for application in high speed satellite communication systems. 
Two concatenated coding schemes are proposed. In Scheme I, the in- 
ner code is decoded with soft-decision Viterbi decoding and the outer 
RS code performs error-correction only decoding (decoding without 
side information). In scheme 11, the inner code is decoded with a mod- 
ified Viterbi algorithm which produces reliability information along 
with the decoded output. In this algorithm, path metrics are used 
to estimate the entire information sequence, while branch metrics are 
used to provide reliability information on the decoded sequence. This 
information is used to erase unreliable bits in the decoded output. An 
errors-and-erasures RS decoder is then used for the outer code. These 
two schemes have been proposed for high speed data communication 
on NASA satellite channels. The rates considered are at least double 
those used in current NASA systems, and our results indicate that 
high system reliability can still be achieved. 

7.. 
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I Introduction 

To meet the ever-increasing demand for satellite communication and voice- 

band telephone services, the search for bandwidth and power-efficient mod- 

ulation/coding systems has recently become a very active research area 

[l-91. The basic idea of bandwidth efficient trellis codes, or trellis coded 

modulation (TCM), pioneered by Ungerboeck [l], is that by trellis cod- 

ing onto an expanded modulation set (relative to that needed for uncoded 

transmission) and by designing the trellis codes to maximize the minimum 

free Euclidean distance between allowable code sequences, asymptotic (high 

signal-to-noise ratio) coding gains of 3 CJ 6 d B  compared with an uncoded 

system can be achieved d thout  bandwidth expansion. The performance of 

TCM systems can be measured in terms of their asymptotic coding gain y 

over an uncoded system with the same spectral efficiency. The asymptotic 

coding gain increases with the number of states in the trellis. For exam- 

ple, Ungerboeck's simplest scheme uses a 4-state, rate 2/3 trellis encoder 

1~4th %PSI( moddation md achieves a iinc~ded 

QPSK modulation without bandwidth expansion. ,4 more complex 16-state 

encoder achieves a y = 4.1 dB coding gain. 

= 3 dB c ~ d i n g  ggin 

Practically, we are more concerned with the real coding gains which can 

be achieved at moderate values of the decoded bit error rate (BER) than 

with the asymptotic coding gain. For satellite communication, decoded 

BER's in the range of N lo" are reasonable requirements. Channel 

capacity results imply that real coding gains over uncoded QPSK of 8.7 dB 

at a BER of and 15.5 dB at a BER of lo-' can be achieved [1,2]. 

Ungerboeck's 4-state code achieves a 3 dB real coding gain over uncoded 

QPSK without bandwidth expansion both at and lo-' BER's, while 

his 16-state code achieves a 3.7 dB gain at and a 3.9 dB gain at 
10". In this paper, we investigate the use of concatenated codes with 
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TCM inner codes and Reed-Solomon (RS) outer codes to achieve larger 

real coding gains over uncoded QPSK at BERs of - lo-’ with little 

or no bandwidth expansion. 

Concatenated coding has long been used as a practical means of achiev- 

ing long block or constraint lengths (and thereby achieving large coding 

gains) [lo-141. One such system consists of Viterbi decoding of an (n,l,m) 

convolutional inner code with BPSK modulation concatenated with an 

outer RS code. However, the overall effective information transmission 

rate of this system is less than l / n , n  > 2, bit per signal dimension [ll, 121. 

This system achieves increased power efficiency at the expense of decreased 

spectral efficiency. 

In this paper, we present a bandwidth efficient trellis inner code/RS 

outer code concatenated coding system for use in high speed satellite com- 

munication systems. The goal of using bandwidth efficient trellis codes as 

inner codes is to achieve large coding gains over uncoded QPSK without 

bandwidth expansion. We will see in the following sections that such a 

system can provide coding gains from 4 to 8 dB at BER’s of - lo-’ 

with little or no bandwidth expansion (while the asymptotic coding gain 

can be as large as 20 dB), when uncoded QPSK is used as our reference 

system. 

There are two types of bandwidth efficient trellis codes: lattice-type trel- 

lis coded modulation (e.g., QASK) [1,2,3,4,5] and constant-envelope-type 

trellis coded modulation (e.g., MPSK) [1,6,7,8,9]. The former is more power 

efficient than the latter under an average energy constraint. However, since 

const ant-envelope signals mitigate the non-linear effects of TWT amplifiers 

and can be implemented for high speed modem operation [15], trellis coded 

MPSK modulation is the preferred modulation scheme for satellite chan- 

nels. Hence, we will consider the case when trellis coded MPSK modulation 

is used as the inner code. 
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Fig. 1 shows the encoding-decoding block diagram of the concatenated 

coding system. Encoding is performed in two stages. An information se- 

quence of Kb bits is divided into K symbols of b bits each, and each &bit 

symbol is regarded as an element of GF(2b). These K symbols are used as 

the input to the RS encoder. The output of this encoder is an N-symbol 

codeword which is symbol-interleaved and then serially encoded by the 

trellis encoder. Decoding is accomplished in the reverse order. The output 

of the maximum-likelihood (Viterbi) trellis decoder contains bursty errors. 

The main purpose of the inner code is to shape the distribution of the errors 

on the inner channel, rather than to correct errors, particularly when the 

iriner code rate is around the cutoff rate of the inner channel. When an RS 
outer code is used, this shaping compresses the random errors on the inner 

channel into symbol errors corresponding to the symbol size used by the 

outer code [13]. The use of bandwidth efficient trellis codes as inner codes 

has one important feature: because of the bandwidth efficient property of 

the code, it compensates for the bandwidth expansion introduced by the 

outer RS code, so that the overall system suffers no bandwidth expansion. 

Two concatenated coding schemes are studied. Scheme I, a Viterbi de- 

coded trellis inner code/RS outer code system, where the Viterbi decoder 

outputs are provided to the outer decoder without side information, is stud- 

ied in Section 11. Code performance results for several examples of scheme 

I are shown in figures 2-3 and tables 1-2. Asymptotic coding gains are also 

determined and presented in figures 4-6. A modified Viterbi decoding algo- 

rithm for trellis codes with output reliability information is introduced in 

Section 111. Scheme 11, a concatenated coding system with side information 

available to the outer decoder, is then studied in Section IV. In the mod- 

ified algorithm, path metrics are used to estimate the entire information 

sequence, and branch metrics are used to provide reliability information on 

the decoded sequence. This is done by erasing a certain number of bits 
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on the survivor of a comparison between the two most likely paths whose 

metrics are within some fixed threshold of each other. Code performance 

results for several examples of scheme IX are shown in figures 8-9. Finally, 

in Section V, we summarize our results and draw some conclusions which 

are useful in the design of concatenated coding systems. 

I1 Coding Scheme I - Without Side Information 

A concatenated coding system is shown in Figure 1. As mentioned in Sec- 
tion I, we use bandwidth efficient trellis codes as inner codes and (N,K) RS 
codes with symbols over GF(2”) as outer codes. Decoding is accomplished 

in the reverse order of encoding. The inner decoder uses the Viterbi al- 

gorithm. The outputs of the inner decoder (without side information) itre 

grouped into b-bit symbols. Because the lengths of the bursts of decoding 

errors made by the Viterbi decoder are widely distributed, symbol dein- 

terleaving is used so that errors in the individual RS-symbols of one block 

(N  symbols) are independent; otherwise, a very long block code would be 

required for efficient operation. 

In this concatenated coding system, the bandwidth efficient inner trellis 

codes have two functions: 

1. To compensate for the bandwidth expansion introduced by the outer 

RS code; 

2. To compress the random errors on the inner channel into symbol 

errors which can be corrected by the outer RS code. 

In the reminder of this section, we study the performance of Scheme 

I. We first calculate the decoded BER and determine the coding gain, at 

a given decoded BER, in terms of the “information energy-to-noise power 

density ratio”, Ea/No. Then we derive an expression for the asymptotic 
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coding gain for very large d u e s  of Eb/No. All coding gains are given with 

reference to uncoded QPSK modulation. 

A. v 
Let the minimum distance of the (N,K) RS code be d2. When an N -  

symbol block is received by the outer decoder, it performs errors-only de- 

coding. That is, if the N-symbol block contains t 2  = [(dz - 1)/2] or fewer 

errors, the errors are corrected; otherwise, decoding fails. t 2  is called the 

error-correcting-capability of the (N,K) RS code [14]. The decoded bit error 

rate at the output of outer decoder is closely approximated by 

where P, is the symbol error probability into the outer decoder. In this 

subsection, we give several examples of Scheme I. For each example, we 

use an RS code with symbois over G'FiFj and N = 255 as the outer code. 

Rate R1 trellis coded 2L-ary PSK modulation, with L = 3 or 4, is used as 

inner code. Since 2L-ary PSK modulation is two dimensional, the effective 

information rate of the inner code is given by 

L 
2 (2) Re,, (1 1 = -RI bits/dimension, 

and the overall effective information rate of the concatenated coding system 

is 

R2 bits/ dimension, 
K (1) - = Refj = Re j j N e f t  

where R2 = K/N is the rate of the (N,K) RS code. 

The symbol error probability P, in (1) is obtained by 

(3) 

computer sim- 

ulation on an AWGN channel unless otherwise noted, and (1) is used to 

estimate the final decoded BER. 
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Example 2.1 

Periodically time-varying trellis codes (PTVTC) of rate R1 = (2P + 
9/33, P 2 2, 1 5 i < P, are used as inner codes with 8-PSK modulation 

[6]. These codes are especially designed for high data rate channels with 
low decoding complexity. This PTVTC/&PSK system has an effective 

information rate R$\ = R13/2 = (2P + i) /2P > 1 bits/dimension, so it is 

possible to achieve an overall effective information rate R,fj equal to 1 bit/ 

dimension or greater. Moreover, because of the periodic property of the 

code, its trellis structure is the same as the trellis structure of a lower-rate 

code, and as a result the complexity of the decoder is reduced significantly 

PI 
The PTVTC’s are decoded by the Viterbi algorithm assuming no de- 

modulator output quantization. Fig. 2.1 shows the decoded BER Pb vs. 

Eb/N, for concatenated codes with &state inner codes and 3 different RS 
outer codes, where the outer code rate R2 is chosen such that R,ff = 1 

bit/dimension. Fig. 2.2 gives similar results for 16-state inner codes. In 

Figs. 2.3 and 2.4 we show the required Eb/No to achieve decoded BER’s 

of and lo-’ for 4-state and 16-state inner codes, respectively, as a 

function of R,fj. 
From Figs. 2.1 - 2.4 we observe that, for a given R,f f ,  systems with 

lower inner code rates give better performance. Also note that at high 

effective code rates, e.g., R,ff = 1 bit/dimension, we still get large coding 

gains. For example, with a 16-state, RI = 7/9 PTVTC, the coding gain 

equals 3.92 dB at Pb = and 6.18 dB at Pb = io-’. Even for a 4state, 

R1 = 7/9 PTVTC, coding gains of 3.68 dB and 5.98 dB at Pb = 

and pb = lo-’, respectively, can be obtained. Note that as the number of 

trellis states increases from 4 to 16, only about 0.2 dB more coding gain 

is obtained. This appears to be a characteristic of coded modulation in 

general [l]. We will see this more clearly when we derive the asymptotic 
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coding gain. 

Example 2.2 

Ungerboeck’s 16-state, rate R1 = 2/3 convolutional code with &PSK 
modulation is used as the inner code. This code has an effective information 

rate R$\ = 1 bit/dimension. Therefore, the overall effective information 

rate, R,f f ,  of the concatenated coding system is less than 1. Again, the 

inner code is decoded by the Viterbi algorithm without demodulator output 

quantization. The final decoded bit error probability Pb is shown in Fig. 

3.1 for 2 different RS outer codes. Fig. 3.2 shows the required Eb/No to 

achieve Pb = and lo-’, 

coding gains of 4.96 dB and 7.25 dB, respectively, can be obtained with 

only 12.5% bandwidth expansion. This compares with 3.7 dB and 3.9 dB 

coding gains, respectively, with no bandwidth expansion, for the inner code 

alone. 

and lo-’ as a function of R,ff.  At Pb = 

Example 2.3 

In this example, two kinds of trellis codes are used as inner codes. The 

first kind uses 8-PSK modulation twice per trellis interval (forming a 64- 

ary set), and this set is then coded with a R1 = 5/6 trellis code [7,8]. 

Viewed more generally, code symbols are mapped onto a four-dimensional 

signal set (8-P‘SK x 8-PSK) with 5 information bits for every two 8- 
PSK signals. Thus the effective information rate is R$\ = 5/4 = 1.25 

bits/dimension. The second kind uses rate R1 = 3/4 convolutional codes 

with 16-PSK modulation [9]. The effective information rate is R$$ = 3/2 

= 1.5 bits/dimension. This code is more bandwidth efficient than the R1 
= 5/6, 8-PSK code, but it is less power efficient. 

Let d f ,  E,, and A be the normalized minimum free Euclidean distance, 

the energy per modulation symbol, and the number of nonzero information 
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bits in the set of paths at distance d j  from the correct path, respectively. 

Then at high signal-to-noise ratios, the bit error probability at the Viterbi 

decoder output is approximated by 

e N AQ 5 (IF) = 4 Q  (I-) , for R1 = 5/6 and 8-PSK, (4.1) 

and 

E N j - Q  A (jy) = $Q (i-) , for R1 = 3/4 and 16-PSK. (4.2) 

The RS-symbol (over GF(2b))  error probability at the output of the Viterbi 

decoder is bounded by 

P, 5 be. (5) 

The final decoded bit error probability Pb can be obtained from (4.1), (4.2), 

( 5 ) ,  and (1). Tables 1.1 and 1.2 list the coding gains over uncoded QPSK 

at Pb = and lo-’ for the R1 = 5/6, 8-PSK and R1 = 3/4, 16-PSK 

inner codes, respectively, where we have chosen the outer RS code rate Rz 
such that the overall effective information rate R,ff = 1 bit/dimension. 

In both cases, the relatively poor performance of the 8-state and 16-state 

codes compared to the 4-state codes is due to a large number of minimum 

free distance paths. 

B. Asymptotic coding gain 

Having studied the performance of concatenated coding systems for 

small and medium values of Eb/No, it is interesting to look at how the 

systems perform at large values of Eb/No, i.e., the asymptotic coding gain. 

This also gives us some insight into concatenated coding system design. 

When uncoded QPSK is used on an AWGN channel with coherent de- 

modulation, the demodulator output BER is given by 

pb = Q (\is) N l e -Eb /Nol  2 for large Eb/No. 
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For our concatenated coding system, we assume rate R1 trellis coded 2L- 
ary PSK modulation as the inner code and an (N,K) RS code with symbols 

over GF(2b)  as the outer code. Then 

and from (2) and (3) it follows that 

The BER at the output of a Viterbi decoder without demodulator output 

quantization is approximated by 

N AQ (4%) = AQ (47) 
5 ) ,  and (l), the final decoded BER Pb of the concatenated coding 

system is approximated by 

pb 

Comparing (6) and (9), we see that for a fixed Eb/No, the (negativ-) expo- 

nent with concatenated coding is larger by a factor of d2,Reff(t2 + 1 ) / 2  than 

the exponent without coding. Since the exponential term dominates the er- 

ror probability expression for large Eb/No, we define the asymptotic coding gain 

(in decibels) as 
A $IfReff(h + 1) 

2 
7 = lolog,, 
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For RS codes, 
N - K  - N(1-R2) - 

c) c) 
t 2  = 

Substituting (11) into (lo), the asymptotic coding gain can be rewritten as 

d2 R(' 
= 10lOgl, 2 eff + 10log,,R2 ( 2 R2) + 1). (12) 

Note that in (12) the first term denotes the coding gain due to the band- 

width efficient inner code and the second term represents the coding gain 

contributed by the outer code. This implies that, for very large Eb/No, the 

inner and the outer codes in a concatenated coding system can be designed 

independently of each other. 

Taking derivatives of y with respect to R2, the maximum coding gain 

is achieved at R2 = 1/2 + 1/N for a fixed inner code, and 

(13) 
d?R(') 1 N  1 

r m a c  = 10log,, - eff + 10log1,- 2 4  (- + 1 + -) N . 2 

Figure 4 shows the asymptotic coding gain y for Example 2.1. Figure 5 

shows y for Example 2.2, Figure 6.1 shows y for Example 2.3 when R1 = 5/6 
coded 8-PSK is used as the inner code, and Figure 6.2 shows y for Example 

2.3 when R1 = 3/4 coded 16-PSK is used as the inner code. The asymptotic 

coding gains shown in these figures are very large, even at high effective 

information rates. For example, in Figure 4 at Rejj = 1 bit/dimension, the 

asymptotic coding gain can be as large as 17 dB. 

Before finishing this section, we can draw several conclusions from the 

above discussion. 

1. For a given Reif,  there exists an R$\ which optimizes system perfor- 
mance, or conversely, for a given Ref,, (1) there exists an optimum value 

of Ref f .  
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2. System performance is very sensitive to Rz at very low and very high 

values of R2. 

3. For small or moderate values of Eb/No, and for a fixed R,jr, a lower 

R$\ is preferred its long as the outer code rate R2 is not too high. 

4. Because d, increases slowly as the number of trellis states increases, 

choosing inner codes with a small number of trellis states increases 

the data transmission rate (by reducing the number of decoder com- 

putations) with only a slight sacrifice in system performance. 

I11 A Modified Viterbi Algorithm 

It has been shown that the channel capacity of a concatenated coding sys- 

tem with side information is an upper bound on the capacity without side 

information [13]. The difference between the two capacities is significant, 

especially on very noise channels. Therefore, it is advantageous if the inner 

decoder can provide some kind of reliability information (side information) 

about its estimated output which will aid the outer decoder. In scheme I, 
discussed in Section 11, the inner code is decoded by the Viterbi algorithm 

and the output of the decoder is a sequence of “hard decisioned” binary 

digits, i.e., no side information is associated with the output. To provide 

side information, it becomes necessary to modify the conventional Viterbi 

algorithm so that soft decisioned outputs are made available to the outer 

decoder. 

Several ideas have been proposed to provide some kind of side infor- 

mation with the convolutional decoder outputs. Zeoli [I61 proposed a con- 

catenated coding system that employs a long constraint length (rn = 31) 

convolutional code obtained by annexing a tail to a (3,1,7) convolutional 

code. The longer code is then decoded by the same Viterbi decoder as 

the short code, with the exception that the information sequence along the 



best path to each state is treated as correct and used to “cancel” the effect 

of the longer tail from the encoded sequence. The tail provides excellent 

error-detection capability once the decoder starts to make mistakes. But 
the algorithm is subject to very serious error propagation and the decoder 

has to be reset frequently. 

Another method of providing reliability information with the decoder 

output is to compute the a posteriori probability of each decoded symbol 

from the decoder being correct [12]. However, the a posteriori probabil- 

ity must be computed for each branch using a recursive method and real 

numbers must also be stored. This computation process slows down the 

decoder, so i t  is not suitable for high speed systems. 

A third alternative is to use the “Viterbi decoding algorithm for con- 

volutional codes with repeat request” [ 171 to extract reliability information 

from the inner decoder. When all the path metrics at some level of the 

trellis are below a predetermined threshold, the received sequence up to 

that level is erased. But this approach has two major drawbacks: 1) when 

a long received sequence is erased, this erasure information cannot be used 

by the outer decoder because the number of erasures may exceed the era- 

sure correction capability of the outer code; 2) with high probability, most 

of the symbols in the received sequence can be decoded correctly and hence 

should not be erased. 

In the following, we propose a decoding technique based on the Viterbi 

algorithm which erases only the information symbols that are “probably 

in ~ X T O ~ ” .  This erasure procedure does not affect the decoder’s selection of 

the most likely path. Therefore, the decoder is still maximum-likelihood. 

Furthermore, the algorithm is very simple to implement and capable of high 

speed operation. 

As the name suggests, an (n,k,m) trellis code is best 

of its trellis diagram. In the decoding of trellis codes 

described in terms 

by the Viterbi al- 
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gorithm, a first-event error is made at an arbitrary level j if the correct 

path is eliminated for the first time at level j in favor of the incorrect path. 

This is illustrated in Figure 7. The incorrect path must be a path that 

had previously diverged from the correct path. For the example shown in 
Figure 7, let 

7 4 - 3 7  4 - 2  4-17 y )  v.  - (... 
3 -  

represent the correct path and the incorrect path, respectively, where v(v,') 
is the symbol on the ifi branch of the correct (incorrect) path. Also let 

represent the information sequences associated with paths Vj  and Vi, re- 

spectively, where U;(U[) is a binary k-tuple. Denote a branch metric by 

X(K) and a path matric by X(Vj). From Figure 7 we observe that the 

bits Ujl--3, Ujl-2, Uj-l, Ujl are unreliable and should be erased. This 

observation motivates us to propose the following decoding algorithm. 

Modified Viterbi Algorithm: 

For each state at level j ,  select the path Vi = (e - - ,  yL1+l, y-1+2, - - , 
y-17 Vj') ( 1  > 1) that has the largest metric X(Vi) and the path V j  = 

( e  - - , Vj--l+l, Vj-[+2, - ,  4-1, y )  that has the next largest metric X(V,). 

Because Vi  has the largest metric, Vi survives at that state. Moreover, if 

14 



decoding continues as in the conventional Viterbi algorithm. On the other 

hand, if 

X(Vi) < X(Vj) + T, (15) 

Uj-l+2,...,Ui-l, I U; on the surviving path are then the bits Uj-l+l, 
erased and decoding continues. 

This algorithm applied to any (n,k,m) trellis code. If, however, all k 
input bits are shifted into memory, there can be no parallel transitions in 

the trellis. Since the last km information bits associated with an error event 

of length I branches must be correct for the incorrect path to remerge with 

the correct path, decoding errors are confined to the first I - m branches. 

In this case, when (15) is satisfied, only the bits Uj-l+l, Uj.-l+2t - - - , Uj-m I 

on the surviving path are erased. 

Note that if T = 0, the algorithm reduces to the conventional Viterbi 

algorithm. As an illustration of the algorithm, in Figure 7, for some state 

at level j ,  suppose that X(Vs) > X(Vj), so the incorrect path Vi survives. 

If (15) is satisfied, then the bits Uj’-3, Uj-2, Uj-l, Uj’ are erased. Note 

that (15) is equivalent to 

( Y I - 3 )  + ( 2)  + ( 1) -k ( ? I )  < ( v3 - 3) + ( 4 - 2) + ( v3 - 1) + ( 6)  + T. 
( 16) 

This implies that, if the metrics of the two Pbranch sequences are too 

“close” in terms of the threshold T, the corresponding information sequence 

on the surviving path is not reliable, and therefore a tag should be attached 

to it which indicates its degree of reliability. The simplest way of doing this 

is to erase it. 

From (16) we see that this erasure decision is made on the most recent I 
branches for an I-branch error event, and hence it is a “local” estimate. On 

the other hand, 

of view, we see 

the path 

that the 

estimate is a “global” estimate. Fkom this point 

algorithm is constructed based on the following 



ideas: 

1. By letting the path with the largest path metric survive, we are choos- 

ing the maximum-likelihood estimate. 

2. By performing a “branch comparison” over the most recent I branches, 

we provide some reliability information on the maximum-likelihood 

path. 

Because the reliability is estimated over only I branches, the reliability 

estimates are suboptimum. However, in feedback decoding of convolutional 

codes, decisions are made with a delay of only one constraint length [14]. 
Hence, we can say that the reliability estimates have a certain degree of 

precision. Ideally, the number of erased k-tuples, I, should equal the length 

of the error event. Practically, however, choosing I equal to the average 

error event length should be sufficient. 

IV Coding Scheme I1 - With Side Information 

The encoding process is the same as in Scheme I. Decoding is done in 

two steps. First, the inner trellis code is decoded by the modified Viterbi 

algorithm presented in the last section. The outputs of the inner decoder 

consist of binary digits as well as erased bits, and they are grouped into 

b-bit symbols, deinterleaved, and sent to the outer decoder. Symbols which 

contain any erased bits are considered as erasures by the outer decoder. 

Let i be the number of erased symbols in an RS outer codeword of length 

N .  The outer decoder declares an erasure (or raises a flag) for the entire 

block of N symbols if i is greater than the erasure-correction threshold T,,, 
where 

Te, L (d2 - 1) (17) 

and d2 is the minimum distance of the outer (N,K) RS code. If i is less than 

T,,, the outer decoder starts errors-and-erasures decoding on the N-symbol 

16 



block. Let t( i)  be the grror-correc tion threshold for a given i ,  where 

If the syndrome of the N-symbol block corresponds to as error pattern of 
i erasures and t(i) or fewer symbol errors, errors-and-erasures decoding is 
successful. The values of the erased symbols, and the values and the loca- 

tions of the symbol errors, are determined based on the decoding algorithm. 

However, if more than t ( i )  symbol errors are detected, then the outer de- 

coder again declares an erasure (or raises a flag) for the entire N-symbol 

block. 

Let P, and Pe be the RS-symbol error probability and RS-symbol era- 

sure probability at the input of the outer decoder, respectively. The prob- 

ability of correct decoding of a block is given by 

where Te, and t ( i )  are defined in (17) and (18). Let Pbe and Pbj denote the 

probabilities of block erasure and incorrect decoding, respectively. Then 

and 

The probability of incorrect decoding of a block is not easy to determine, 

but it can be upper bounded by El81 

17 



and the final decoded BER of the concatenated coding system is approxi- 

mated by 

In the following we consider several examples for Scheme 11. The outer 

code is again an RS code of length N = 255. Bandwidth efficient inner 

trellis codes are decoded by the modified Viterbi algorithm. We use B to 

denote the number of erased branches in the modified Viterbi algorithm, 

and the erasure threshold is chosen to be 

where df' is the minimum free Euclidean distance of the inner code normal- 

ized by the signal energy at the demodulator output, and 2'' is a normalized 

threshold. The W-symbol error probability P, and the RS-symbol erasure 

probability P, at the input to the outer decoder are determined by com- 

puter simulation. In decoding the outer code, fixed erasure-correction and 

error-correction thresholds T,, 5 (d2 - 1) and t 5 l(d2 - 1)/2], which are 

independent of the number of erased symbols in an N-symbol block, are 

assumed, and (21 )  and (22) are modified as 

and 

Usually, the probability of block erasure Pbe is much larger than the prob- 

ability of block decoding error Phi. Therefore, Pbe + Pbj is a tight bound on 

Pb,. In the examples below we compute the sum of the probability of block 

erasure and block decoding error, Pbe + Pb;, and the final decoded BER Pb. 

18 
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Example 4.1: 

As in Example 2.1, the PTVTC’s of R1 = ( 2 P  + i ) / 3 P , P  2 2 ,  and 

1 5 i < P with 8-PSK modulation are used as inner codes. Only 16-state 

codes are considered. Pb and Pa, 4- Pb;, with R1 = 7/9,5/6,8/9, are shown 

as functions of t in Figures 8.1, 8.2, and 8.3, with T,, = 10, 8, and 9, 

respectively. 

Example 4.2: 

As in Example 2.2, Ungerboeck’s R1 = 2 / 3  coded 8-PSK with 16 trellis 

states is used as the inner code. Pb and Pbe + Pbj are shown in Figure 9 as 

a function o f t  with T,. = 10. 

From the above examples, we see that for a given Eb/No, the decoded 

BER of Scheme I1 is significantly lower than that of Scheme I. Scheme 

I1 provides us with flexibility in the system design. Tradeoffs between 

the decoded BER and the probability of block erasure can be achieved by 

changing T’, B, T,,, and t. 

V Summary and Conclusions 

In this paper we considered high rate concatenated coding systems with 

bandwidth efficient inner codes and RS outer codes for application to satel- 

lite communication systems. Specifically, we considered trellis inner codes 

with MPSK modulation which achieve effective information rates equal to 

or greater than 1 bit/dimension. These codes mitigate the non-linear ef- 

fects of TWT amplifies and make use of soft decision Viterbi decoding to 

achieve significant coding gains on bandlimit ed channels. 

Two types of concatenated coding systems were studied. Scheme I oper- 

ates without side information, while Scheme I1 uses side information. The 

performaace of Scheme I was studied by computer simulations, formula cal- 

culations, and by asymptotic coding gain derivations. Our results indicate 

that coding gains from 4 to 8 dB can be achieved at decoded BER’s of 

19 



to lo-’ with little or no bandwidth expansion. For example, with 16-state 

inner codes with 8-PSK modulation, coding gains of 6.18 dB at lo-’ and 

3.92 d B  at without bandwidth expansion (Example 2.1, Figure 2.2) 

can be achieved. With only 12.5 9% bandwidth expansion, coding gains 

of 7.25 dB at (Example 2.2, Figure 3.1), are 

achievable. These 16-state decoders are capable of high speed operation. 

and 4.96 dB at 

In studying the performance of Scheme 11, we first proposed a modified 

Viterbi algorithm for decoding trellis codes. Side information was provided 

to the outer decoder in the form of symbol erasures. The outer RS code was 

then decoded by an errors-and-erasures decoder. A significant improvement 

in decoded BER was obtained for Scheme 11. For example, decoded BER’s 
as low as can be achieved 

with a 16-state inner trellis code, 8-PSK modulation, and an overall effective 

information rate of 0.9 bits/dimension at an Eb/No of 5.45 dB (Example 

4.2, Figure 9). For systems where block erasures are allowed, such as ARQ 
systems, Scheme I1 is highly recommended. 

with an erasure rate no more than 
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Table 1. 

1 

Coding gain over QPSK of  Example 2.3 
w i t h  R = 5/6 coded 16-PSK i n n e r  code ( formula  ca l cu la t ion )  

# of  inne r  % f f ,  b i t s  per Coding ga in  a t  loe6 Coding ga in  a t  10-9 
code states dimens ion (Eb/NO)dB (Eb/NO)dB 

2 

4 

8 

16 

2 .85  

5 . 0 7  

3 . 6 5  

4 . 1 5  

5.08 

7 . 1 3  

6 . 2 8  

6 . 3 5  

Table 2. 

1 

Coding gain over QPSK o f  Example 2.3 
w i t h  R = 314 coded 16-PSK i n n e r  code ( formula  ca l cu la t ion )  

- 
B o f  inne r  % f f ,  b i t s  per  Coding gain a t  Coding gain  a t  
code s t a t e s  d imens ion (Eb/No)dB (Eb/No)dB 

2 1 2 . 0 5  4 .18 

4 1 3 . 6 0  5 .77  

8 1 - 3 . 2 2  5 . 4 5  

1 6  1 3 . 2 2  5 . 4 7  
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ABSTRACT 

Bandwidth efficient codes can be used to improve the performance of digital aansmis- 

sion on bandwidth limited channels such as the telephone channel. An important class of error 

correcting codes suitable for bandwidth limited channels is referred to as Trellis Coded Modu- 

lation (TCM). Such codes combine a binary convolutional encoder and a modulation scheme. 

Recently, many good TCM schemes have been found. In this paper, we derive a lower bound 

on the minimum free Euclidean distance of TCM which guarantees the existence of good 

TCM codes of any complexity. We use the bound to compare trellis codes combined with 

PSK, PAM, or QASK modulation. We also compare the bound with known upper bounds. 

This random coding bound is exponentially tight for large constraint lengths and predicts the 

asymptotic performance of TCM when the complexity of the code becomes large. The bound 

can be used with any code rates and any modulation scheme and shows that the free distance 

increases linearly with the constraint length for large values of the constraint length. 

I INTRODUCTION 

The transmitter power and the channel bandwidth constrain the design of a digital com- 

munication system. On some channels the bandwidth constraint prevails over the power con- 

straint. For example, on the telephone channel (a typical bandwidth limited channel with 

bandwidth W = 3 kHz), a large Signal-to-Noise Ratio (SNR) of around 28 dB permits the use 

of several signal amplitudes with a moderate error probability [Forney et. al., 19841. On such 

channels, efficient coding systems transmit at more than one information bit per signal dimen- 

sion. On satellite .channels, the power constraint used to prevail over the bandwidth constraint. 

But the increasing need for bandwidth efficient satellite communication systems makes the 

satellite channel more bandwidth limited. Bandwidth efficient codes increase the power 

efficiency on bandwidth limited channels, i.e., for a given bandwidth and rate of information 

bits sent per transmission interval, a desired error probability can be achieved with less average 

signal energy. If Additive White Gaussian Noise (AWGN) perturbs the channel, the error pro- 

bability of an uncoded system depends on the minimum Euclidean distance between signals. 

We will define the minimum Euclidean distance more precisely later. Distributing a given 

average energy into more signals without coding reduces the distances between signals and 

increases the probability of error. A bandwidth efficient coding scheme lowers this increased 

error probability to that of an uncoded scheme of larger average energy by introducing 
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redundancy between successive symbols. In other words, a bandwidth efficient scheme 

transmits with the same rate and error probability as an uncoded system with larger average 

energy. Alternately, a bandwidth efficient scheme can transmit more information bits per 

transmission interval than an uncoded scheme with the same average energy and error proba- 

bility. However, the tradeoff is increased complexity. TCM is an application of Shannon's 

information thmry, and cutoff rate and channel capacity calculations show that 6 dB to 9 dB 
can be gained over an uncoded system at an error probability of lo-' to lo4 mngerboeck, 

19821. 

II DEFINITIONS 

A typical trellis coded modulation (TCM) scheme includes a binary encoder followed 

by a modulator (Fig.1). During every signaling interval [tT,(t+l)TJ of length T, k input bits 

up), i = 1 , . . . , k, enter the encoder, and n output bits vy), j = 1 , . . . , n, leave the 

encoder. k is the information stream width. For any f ,  there are Zk possible input blocks 

( uy), . . . , ut )  ) and 2" possible output blocks v(')A ( vy) , . . . , vi) ). Rb 4 kln is the 

rate of the binary encoder. The memory order of the encoder is V, and every output vy) 
depends on the ament  information block (k  bits) and on the V previous blocks (vk bits). 

However vF),j = 1 , . . . , n, may not depend on all the vk past information bits, and the 

number of memory registers Vi that store one input stream may depend on i, so that 

0 I vi I V. We call vo 4 Vi the total memory of the TCM scheme. In this paper, we 

resmct our study to the case where vi = V, i = 1-, . . . , k, so that the constraint length is 

v0 = kv, i.e., we assume that the encoder contains k memory registers of equal length V. The 

encoder of a TCM scheme is a finite state machine with 2"' states, where the contents of the 

vo binary registers specifies the encoder state. 2k branches corresponding to all possible input 

blocks enter and leave each state. The modulator maps each of the 2" binary n-tuples leaving 

the binary encoder onto a signal constellation. A signal constellation s is a finite set of M sig- 

nal symbols yo s = 1, . . . , M, and can be generated from a set of D orthogonal signals (sig- 

nal space representation). In our case M = 2n, and the signal constellation has D dimensions. 

We define the rate of a TCM scheme as R & klD, the number of information bits transmitted 

per dimension. The codewords in a TCM scheme can be represented by a trellis whose 

k 

i =  1 
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branches are labeled with channel signals, and TCM schemes are sometimes called trellis 

codes. A (k, V) trellis code is defined by a trellis with zkv states and 2k branches leaving each 

state and entering 2k different states, and a time-varying mapping of signals in S onto 

branches. The complexity of the decoder is a function of 2 ('O + = 2k (" + '1. (Note that cer- 

rain authors define the constraint length as n(v + 1) pin-Costello, 19831.) 

Binary and quaternary phase shift keying (BPSK, QPSK) send one information bit per 

dimension (R = 1). Coding on bandwidth efficient systems requires signal constellations with 

more than 2 signals per dimension, for example 8-PSK, to send more than one information bit 

per dimension (R > 1). These higher alphabet modulation schemes can be used to generate 

redundancy in the transmitted message to improve the reliability of forward error correction 

(FEC) coding. In conventional FEC coding systems, the encoder is designed to maximize the 

minimum Hamming distance between binary codewords (n-tuples .(I)). Then these binary 

codewords are mapped onto a signal constellation disregarding the geometry of the constella- 

tion. Nonetheless, for AWGN channels, the channel error probability between channel signals 

yt  and y; in S depends on the Euclidean distance de(yt, yr)) between signals yt and y;  in the 

signal constellation S. The Euclidean distance can be made proportional to the Hamming dis- 

tance only for BPSK and QPSK modulation. This is why for TCM schemes that use signal 

constellations other than BPSK or QPSK, the encoder and the modulator are selected jointly to 

maximize the minimum Euclidean distance between codewords rather than the minimum Ham- 

ming distance. 

The signal error probability P, of a trellis code used on an AWGN channel and 

decoded with a maximum-likelihood sequence estimator (Viterbi algorithm) depends on the 

Euclidean distance between channel signals [Viterbi, 19711. P, is upperbounded by: 

where the sum is taken over all possible distances d between distinct paths. dpee is the 

minimum Euclidean distance between distinct paths, A(d) is the path multiplicity of distance d, 

i.e., the number of error paths at distance d from the correct path, E, is the average signal 

energy of the constellation, No is the one-sided power spectral density of the Gaussian noise, 

and EJNo is the SNR of the channel. Equation (1) means that the performance of a TCM 

scheme depends on the distribution of distances between encoder output sequences correspond- 

ing to distinct encoder input sequences. For large values of SNR, the sum of (1) is equivalent 
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to 1/2 A(dpee) e - E”o, whose behavior is mostly determined by the exponent, or simply 

by Therefore, for large SNR, a small error probability P, corresponds to a large d;,,,,. 

We call dmin the minimum Euclidean distance between signals in a constellation. Then the 

asymptotic coding gain (for large SNR) of a TCM scheme over an uncoded system is given by 

G e 10 loglo -, where is the minimum Euclidean distance of the TCM scheme, and 

d- is the minimum Euclidean distance of the uncoded scheme. 

4= 
dmin 

In this paper we derive a lower bound on the minimum Euclidean distance of TCM 

schemes. The bound is similar to the bound of Costello [Costello, 19741 and Forney Formy, 

19741 on the free distance of convolutional codes. The bound guarantees the existence of codes 

that perform better than the average. We use this bound to compare different modulation and 

coding schemes, such as those proposed by Ungerboeck [Ungerboeck, 19821, Calderbank and 

Sloane [Calderbank-Sloane, 198.51, and Lafanechere, Deng, and Costello Kafanechere-Deng- 

Costello, 19873. We also compare it with Calderbank, Mazo, Shapiro, and Wei’s upper bound 

[Calderbank-Mazo-Shapiro, 1983 and Calderbank-Mazo-Wei, 19851. The main advantage of 

using a bound to compare schemes over searching for good codes is that we do not use 

exhaustive methods but rather optimize the bound and its parameters. This reduces the com- 

plexity of finding good TCM schemes, although we cannot guarantee that we find the optimum 

schemes, because there may exist codes that perform better than the bound. However the best 

known codes behave in accordance with the bound. The bound can also be used to predict the 

performance of new schemes and, if promising, then actual codes can be constructed. 

An efficient TCM scheme assigns channel signals to branches to achieve maximum 

dPee and minimum error probability P ,  when using maximum likelihood decoding. The lower 

bound on dfiee uses a random coding argument based on the moment generating function 

-d’h’y’ , where the overbar indicates an average over the ensemble of all 

code choices (for a given trellis), the first sum is over all choices of paths y, the second sum is 

over all paths y’ diverging from y at time 1, CL and p are arbitrary constants, d is the lower 

bound on d&, and d&,y’) is the Euclidean distance between the channel paths y and y’. The 

lower bound depends on V, k, and the distance distribution of the signal constellation. 

eqd2=P Y Y‘ e Jp 
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III DERIVATION OF THE BOUM) 

For simplicity, we restrict our notation to TCM schemes. However, the derivation, 

except for configuration counting, applies to any Coded Modulation scheme. We call a topo- 

logical trellis a trellis with no signal assignments on the branches, Le., a trellis with no labels. 

A topological path - Y through a topological trellis is a sequence of consecutive branches with 

110 labels. A channel path y is a path through a trellis labeled with channel signals on the 

branches. To a topological path ,Y corresponds an infinite set of possible channel paths y, but to 

each channel path 2 corresponds one and only one topological path E. A channel path y is 

defined by a topological path _Y and a sequence of labels: 

y 2 ( . . . , yi, yfil, . . . , yhn . . . ), where yi+t is a branch in - Y labeled with a channel sig- 

~l in S and j+f is a time index, so that yi+t is the output signal during time interval j+f. We 

will sometimes call yt a signal although it is a labeled branch. The context should make clear 

when we mean a labeled branch or a signal point. A code c is the set of all labeled trellis 

branches for all f. If the code is time-varying, labels depends on f. A code c generates a 

unique set of infinite channel paths y, each path being a set of consecutive branches in c. To 

construct a code, one only needs to label trellis branches with channel signals. The labeling is 

the same for every signal interval if the code is time-invariant. We consider the set C of time- 

varying trellis codes of a given input width k and a given memory length 

VI = . . . = vk = V. The input width k and the memory length V fully determine the trellis 

topology, i.e., the number of states, the number of branches to and from each state, and the 

states linked by a branch. Note that 2k branches leave each state and enter 2k different states. 

We now proceed to derive the bound. The proof of the bound depends on first stating 

precisely what must be proved. 

Statement 1: 

Given a set C of codes c, there exists a code co E C for which dpee(c0) > d if the probabil- 

ity, over all codes c in C, that c + ~ ~ ( c )  I d is less than 1. 

We can rewrite the previous statement as: 

Prob (dfree(c) I d) < 1 
C E  c 

3 co E c S.f. dfiee(CO) > d. 
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By definition dfee(c) = m h  de (y,y’) , where (y,y’) varies over all pairs of distinct paths y 

and 2’ in c diverging from the same state at time instant 1. Such a pair (y,y’) of paths is usu- 

ally called an error event in the convolutional code literature. We call ey (c) the set of paths 

y’ E c such that @,y’) is an error event starting at time 1, i.e., y and y’ are merged at time 1 

and may remerge later or may never remerge. The notation el (c) stands for “the set of error 

paths in c given a correct path 2’. The free distance of a code c is: 

bY7 [ I  

Thus, if for a code c and a positive real number d, dpee(c) I d, at least two distinct paths 

yo E c and y’o E er0 (c) exist such that de bo,&’) < d. Thus for any positive real number 

a, 

We upperbound the left side of (4) by summing over all y’ E eb (c): 

2 1, t fa>O, eadz e-a4blhY7 
Y’E % (4 

The previous equation holds for a given correct path B. We now upperbound the left side of 

(6 )  by summing over all possible correct paths y in c: 

We define a function Ta,Jc) of a code c by: 

r 

where a and p are two positive parameters. Then (7) and (8) imply that 

1 if dfiee(c) I d 
if dpee(c) > d . 

tf c E C and tf a, p, d 2 0 , e apdZ Ta,Jc) 2 (9) 
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Let us define an indicator function on the set C as follows: 

1 iff dp&) I d tf d 2 0, x, (c) = 
0 iff dp,(c) > d . 

Then for any positive real number d, 

where p(c) is the probability of the code c among the set C of time-varying codes associated 

with a given trellis and a given signal constellation. Clearly, from (9)and (lo), 

If (12) were an equality, then (11) and (12) would give an exact formulation of 

Prob (dpee(c) I 4. So the tightness of (12) will determine the tightness of the bound. Com- 
C E  c 
bining (1 1) and (12) yields 

where a and p are positive parameters that will be used later to optimize the bound. We now 

give a weaker but more explicit version of statement 1. 

Statement 2: 

For any set C of codes c, 

eapdZ p(c)  Ta,Jc) < 1 3 3 co E C s.t. dfre,(co) > d. (14) 
C E  c 

In the following, we upper bound the left side of (14) to obtain an even weaker, but 

very explicit statement. The derivation of a random coding bound is based on switching the 

order of summations [Shannon, 19621. The derivation starts with an average over all codes and 

switches summations to obtain an average over all the output sequences or channel paths. We 

explain Shannon’s concept with a formal example. Let c be a code in C, y a channel path of 

the code c, andf(c,y) a function of the code c and of one of its channel paths y (y is often 

called the correct path). According to our notation, c E C and y E c. Then switching the 

summations gives: 
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e €  c 

where y E c denotes the set of all channel paths belonging to at least one code c in C and 

c E C I y denotes the set of all codes in C that contain the channel path y. To simplify 

further, we will replace the sum over y E u c with a sum over y (not to be confused with 

the more restrictive sum over y E c )  and the sum over c E C I y by a sum over c I y (not to 

be confused with a sum over c E C). 

C E  c 

c e c  

Let us now introduce a function 

G(y,c) is the distance generating function of the code C given that the correct path is y. For 

binary linear codes and regular codes [Calderbank-Sloane, 19851, G(y,c) does not depend on 

the correct path y. From the definition of G(y,c), 

Applying Shannon's summation switching, 

Since, for all codes c I y , p(c)  = p(c,yJ = p(c I y J p 0 ,  

1 

P If we use the moment inequality 2 pi ai S for p I 1, then 
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I 

We now switch the order of summations over the codes c I y and the paths y’: 

where ey& u ey (c). Since, for all codes c I y,y’, p(c  I y) = p(c,y’ I y) = 

p ( c  I y,y’) p(y’ I r>, (21) becomes: 

c c c  

c P ( C  I Y,Y% - a4 Qy? C P ( C  I Y) G(y,C> = c Pk’ I r) e 
CIY Y’ E er c I Y,Y’ 

and since C p(c  I y,y’) = 1, 
c I y,y’ 

(22) 

where we have eliminated all the branches that do not belong to y or to y’, and hence do not 

contribute to the error event. When C represents the set of all time varying trellis codes asso- 

ciated with a particular topological trellis, the probability of choosing a signal on one branch 

during time interval [fT,(f+l)TJ does not depend on the signals chosen during previous or 

future intervals. Then if f represents a time index, p(y’ I y) = n p(y;bf), where y: is the 

signal on the fh branch of the path y’, and p(y;/y,> is the probability of having y; on that 

branch given yt. Normally, all channel signals are equiprobable and can be chosen indepen- 

dently, so that for yt#y; p(y:bt) =PO,‘) = 1/M, where M is the number of signals in the sig- 

nal constellation S.  However, for the derivation of the bound channel signals do not have to be 

equiprobable. Finally, from (18), (19), (20), and (22) 

m 

t =  1 

c P ( d  T,,p(c) - Crd,26LY;) 1’. (23) 
C €  c Y 

Equation (23) holds for any trellis and does not depend explicitly on the encoder input width k 
or on the constraint length VO. The next step, what Forney calls configuration counting, con- 

sists of regrouping the paths y (respectively y’) that correspond to the same topological paths 

(respectively - Y’). 
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Configuration counting: 

Given y, configuration counting regroups error events @,y’) of equal length 2, and then 

regroups channel paths y’ that correspond to identical topological paths E’. By definition, an 

error event (y,y’) of length 2 starting at time 1 and corresponding to a topological error event 

c,x’) satisfies 

which means that the branches are different for 2 intervals, but the signals can be themme. In 

other words, yt  # y: for 1 I t 22, but y t  and y: can still be labeled with the same signal 

point. Then, if (y,y’) is an error event of length 2 starting at time 1, 

An error event lasts at least V + 1 information blocks. The input block of width k that 

feeds the encoder at time 1 differs for paths y and y’. This different input block is shifted into 

memory, and it takes at least V time units to clear the memory of that difference. So two paths 

that diverge at time 1, cannot remerge before time v + 1. We define ey,, as the set of paths y’ 

in ey such that the error event &y’) lasts 2 branches. Then, el = . Hence, com- 

bining (23) and (24), 

m 

u 
- t = v + l  

where we regrouped error events of length 2 in el, starting with the shortest error events of 

length v + 1. We now regroup paths y’ in e&, that refer to the same topological path Y’, but 

with different signals on the branches. We note by y’ + - Y’ the fact that E’ is the topological 

path associated with y’, i.e., that y’ is a labeled version of - Y’. We define Ey,, as the set of 

topological paths E’ I y’ + - Y’, y’ E e,,,). 
Therefore, 

- 

associated with elements of ey,, : Ey,, 4 
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The choice of a signal on a branch y; does not depend on the signal labeling the branch yt,  

since different branches of a code are labeled independently. Therefore p(y;lyt) = ~(y;), and 

all topological paths of equal length z generate the same sum over all the channel assignments: 

We call CL7 the cardinality of EB7 . CsT is the number of topological error paths of 

length z diverging from - Y at time 1. ChT does not depend on the correct path y ,  so that 

Cy,7 = C,. Hence, (26) becomes 

and (25) gives 

m 

We now wr i tepw = n p(y1): 
1 = 1  

Now let us introduce the notation: 
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H(yt,S) gives the position of the signal yt relative to the constellation S. Hence, 

Now we eliminate the branches of y that belong to y’ in the same way that we eliminated the 

branches of y’ that belonged to y. We calculate the right side of (34): 

m 7 m 

y 1 = 1  t =  1 t = l  y e s  

Returning to equation (32): 

k 

j = l  
The cardinality C, of E2,. is C7 = n 2[T-vj1+, where [XI, = x if x 2 0 and zero otherwise 

[Calderbank-Mazo-Wei, 19851. Hence for any 7 2 v + 1 , C, = Zh - kv , where 

V I =  . . = v k = v .  

According to Forney’s notation [Forney, 19741, we define 

where y and y’ belong to the signal constellation S,  and p ( y )  is the probability of signal y. 
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A simpler form of (39), using the definition of E(a,p) ,  is 

C E  c T ' = V + l  

We can now write a third statement that follows from statement 2 and (42): 

Statement 3: 

For any set C of trellis codes of input width k and memory length V, 

Statement 3 is as tight as statement 2 when p = 1. We calculate the largest d such that ine- 

quality (43) holds. If E ( a , p )  > kln2, the left side of (43) can be written as 

The previous expression will be smaller than 1 (Le., (43) is satisfied) if and only if 

where 

(44) 

(45) 
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This concludes the derivation of the bound. The bound can now be put in the form of 

Costello’s bound [Costello, 19741. 

Theorem: 

Given a signal constellation S, there exists a (k, V) trellis code with minimum free Euclidean 

distance +ee such that: 

d$ee > max 
I 

where k is the information block size, v0 = kv is the constraint length, S is the signal constel- 

lation, a and p are parameters which optimize the bound, y and y’ are signal points from the 

signal constellation S, d,(y,y’) is the Euclidean distance between signals y and y’, p @ )  is a 

probability distribution on S, E(a,p) = - In - ,b,f)r 1”’ , and 

IV APPLICATION OF THE BOUND 

Symbols y that label branches of the trellis can represent subsets of the constellation 

when the trellis contains parallel transitions. The subset y is composed of the signals assigned 

to a parallel transition. The encoder outputs sequences of subsets rather than sequences of sig- 

MIS. This enables us to study the effects of uncoded bits, or, equivalently, the effects of m a p  

ping signals onto a trellis with parallel transitions using Ungerboeck’s “set partitioning” method 

[Ungerboeck, 19821. In that case, if dmin is the minimum distance between points in the same 

subset, and c#:p) the free Euclidean distance between sequences of subsets, then the overall 

minimum Euclidean distance of the TCM scheme is dpee = min(d$$as), d ~ J .  This 

shows that parallel transitions limit the makimum achievable dp,, of a TCM scheme. 

An evaluation of the bound corresponds to a trellis characterized by k and VO = kv and 

represents the average free distance of all the corresponding trellis codes (all labelings of the 
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trellis). However, since the bound is a random coding bound, it does not represent the best free 

distance achievable with a particular trellis, because optimum trellis codes may perform better 

than the average. 

Like the lower bounds on the Hamming dfia [Costello, 1974 and Forney, 19741, this 

lower bound on the Euclidean %a is exponentially tight and varies linearly with VO for large 

VO. Like any other "Gilbert type" bound, it is not expected to be tight for small Vg. 

The bound depends implicitly on the constraint length VO = kv and on the information 

rate per dimension R. Although only certain discrete values of VO and R are possible, we treat 

d$ee(vo) and -(R) as continuous functions. dfiee 

VO 

V 

1) Variations of dpee with v0: 

USING THE BOUND TO EVALUATE TCM SCHEMES 

Bounds on the free Hamming distance of binary convolutional codes have usually been 

expressed as functions of Vo. We compare TCM schemes with different constellations at a 

given rate R and at a given average energy E,, where E,, is the average signal energy of 

the constellation used in the TCM scheme. The lower bound on dpee increases with the con- 

straint length VO, which means that any dPee can be obtained with a large constraint length. 

However the decoding complexity increases exponentially with the constraint length, so that 

practically only small constraint lengths will be implementable . 

* The effect of increasing the number of signals on dfiee (same rate R, same dimen- 

sionality D, same average energy Eavg): 

Increasing the number M of signals increases dPee because it provides more flexibility 

in the choice of signals assigned to trellis branches (flexibility in the mapping). Signals with 

greater distance can be chosen on the branches of error paths y', given a correct path y, which 

increases dPer Note that increasing M ,  while keeping k constant, lowers the binary code rate 

Rb, which is consistant with the fact that dpee increases. Fig.2 shows PAM schemes with 

different numbers of signals (M = 4, 8, 16, 128). Increasing the number of signals provides 

more gain for small constraint lengths VO than for large constraint lengths. In Fig.2, going 

from 4-PAM to 8-PAM or even 16-PAM provides most of the gain and higher order PAM 
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schemes do not improve dpee significantly. Note that the gain in dpee may not be worth the 

added modulation complexity. 

* The effect of increasing the signal set dimensionality on dfiee (same rate R, same 

number of signals M ,  same average energy Emg): 

Higher dimensional schemes can be obtained by using a basic D-dimensional constella- 

tion for several transmission intervals [wei, 19851 and [Lafanechere-Deng-Costello, 19871. 

Fig.3 shows L-dimensional schemes for which the constellation is constructed from L uses of 

4-PAM (1-dimensional). This construction has the advantage of retaining the distance proper- 

ties of 1- or 2-dimensional constellations so that the only parameter of the TCM scheme that 

vanes is D. For a given constraint length v0, higher L-dimensional schemes yield a larger 

dPee, and as vo increases the curves diverge and the gain goes to infinity. However, the error 

coefficient increases with dimensionality [Forney et. ai., 19841, which may cancel the gain 

from the increased dfiee at moderate decoded bit error rates. 

* The effect of changing the modulation scheme on dfree (same dimensionality D, same 

number of signals M ,  same average energy EaVg, same rate R): 

Changing the modulation scheme affects dPec For example, rectangular constellations 

yield a larger dPee than constant envelope constellations. Fig.4 shows M-PSK vs. M-QASK. 

This suggests that a dPee penalty is associated with constant envelope modulation. Note that 

this penalty increases with the constraint length. Furthermore, the bound gives a means of 

optimizing some parameters associated with a specific type of constellation without searching 

exhaustively for the best constellation. 

* The effect of uncoded bits or parallel transitions on dPee when the signal constellation 

is "mapped by set partitioning": 

Uncoded bits generate parallel transitions in the trellis and limit dpee, since dfree cannot 

be larger than the minimum distance between parallel transitions (the minimum distance within 

the subsets created by "set partitioning"). Fig.5 shows that for 8-PSK, 1 uncoded bit increases 

dPee for small constraint lengths. For small VO, this agrees with the best known codes con- 

structed [Ungerboeck, 19821. For large v0, however, we see that 1 uncoded bit limits the 
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achievable dp,,. The bound shows whether uncoded bits combined with mapping by set parti- 

tioning will increase for small constraint lengths VO. 

2)  Comparison of the laver bound on 

and Pome-Taylor, 19861 and known codes [Ungerboeck, 19821: 

with upper bounds [Calderbank-Mazo-Wei, 1985 

Upper bounds are expected to be tighter than the lower bound for small constraint 

lengths, and the lower bound is expected to be tighter for large constraint lengths (this is analo- 

gous to the way bounds on binary convolutional codes behave). The lower bound is a 

"Chernoff type" bound and therefore is exponentially tight when vo is large. Fig.6 indeed 

shows that upper bounds are tighter than the lower bound for small constraint lengths. But the 
lower bound becomes tighter as vo increases. The slope of the lower bound gives a precise 

indication of the asymptotic rate of increase in dfiee. Finally, the lower bound guarantees the 

existence of codes that can achieve a certain d&. 

3) Asymptotic behavior: - _ _  (R) 

For a given constellation, the achievable dpee / v0 is larger for small R than for large 

(R)  give a means of comparing the asymptotic behavior of dpee for 'pee R. Graphs of - 
different constellations. Several examples are shown in Fig.7. The largest achievable rate R 

depends on the constellation and its dimensionality : it is (Rblog2M) / D for a code rate Rb. 

These largest achievable rates appear clearly in Fig.7. Rectangular lattices constructed from 

the same 1-dimensional constellation (for example 4-PAM in Fig.7) yield the same graph, 

which means that these rectangular lattices have the same asymptotic behavior. In other words 

the curves dfree(vo) are parallel for large v0. The lower bounds are compared with an asymp- 

totic upper bound [Calderbank-Mazo-Wei, 19851 in Fig.7. 

VO 

CONCLUSION 

We have obtained a random coding lower bound on dfiec It takes into account the 

actual Euclidean distances between points of the channel signal constellation. As with any 

"Gilbert" bound [Gilbert, 19521 it is most useful as an asymptotic bound. It provides a means 
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of comparing the asymptotic performance of different modulation schemes and shows that the 
free Euclidean distance increases linearly for large constraint lengths. However, even for short 

constraint lengths, the bound behaves similarly to the best known codes and can be used as a 

preliminary calculation when designing TCM schemes to help select the most promising 

schemes. 
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INTRODUCTION 

Communication over real world channels, particularly mobile satellite channels, suffers from 
nonuniform disturbances that cannot be described by additive white Gaussian noise. One 
important such disturbance is the multiplicative noise arising from multipath reception 
at the receiver (see Hagenauer [l]). Communication channels suffering from multipath 
reception are known as Rayleigh/Rician fading channels. If s ; ( t )  is a signal that is sent over 
a fading channel, then the received signal r ; ( t )  is given by 

r ; ( t )  = as@) + n(t) ,  

where n(t)  is additive white Gaussian noise and a is the fading amplitude whose probability 
distribution is given by 

where Io denotes the modified spherical Bessel function. K is the ratio of the signal energy 
received on the direct path to the energy received via reflected paths (compare [l], [2]). 

Due to the increasing density of communication systems most digital channels are power 
as well as bandwidth limited. Ungerboeck [3] has introduced bandwidth efficient trellis 
coding which provides a coding gain of up to 6dB on additive white Gaussian noise channels. 
In this paper we look at the performance of these bandwidth efficient trellis codes on 
channels plagued by fading. We will limit our attention to the Rayleigh fading channel, i.e., 
K = 0 in (2). 

CUTOFF RATE FOR RAYLEIGH CHANNELS 

Since a great variety of signal constellations can be used on the Gaussian channel, it is 
instructive to look at the cutoff-rates of these constellations on a fading channel. The cutoff 
rate Ro is the exponent in the random coding bound, PB 5 2-NRa,  which gives a bound 
on the average block error probability of all codes of length N .  The importance of Ro 
transcends its use in the error probability bound, as shown by Massey [4]. We assume that 
the decoder is given not only the received signal r;(t), but may be given an estimate of the 
fading amplitude a during each signal interval. We consider two cases: complete and no side 
information, i.e., the receiver either knows the exact value of a or has no information about a. 
We further assume a slowly varying fading amplitude a, which remains essentially constant 
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over a signaling interval. Also, the signals s ; ( t )  are interleaved so that the amplitude fades 
affecting successive symbols are independant. 

Without Side Infoma tion 
If the decoder has no information about a, Ro is given by 

where A is the signal alphabet size, a and a are the signals, pk and pi are the probabilities 
with which they are chosen, No is the one sided spectral noise power density, X is the 
Chernoff parameter and c = 2; - a&. Equation (3) is too messy to interpret in the sense 
that a design criterion can be deduced from it. A computer evaluation shows interesting 
differences between different constellations. It is most noteworthy that the rectangular 
signal constellations have a significantly poorer & than the constant envelope signal sets, 
while they have a slightly better Ro on the Gaussian channel. 

With Side Informat ion 
Here we consider a decoder that is given perfect knowledge of the fading amplitude. Such 
information can partly be extracted from the received power of a pilot tone, which is needed 
anyway in order to synchronize the phase. In this case Ro is given by 

This equation is considerably less complex and provides a key to code design for fading 
channels, as we shall see in the next section. 

TRANSFER FUNCTION BOUND 

Any decoding error in a trellis code is characterized by a set of incorrect branches which 
the decoder chooses over the correct branches. With each incorrect path we may associate 
a sequence of incorrect trellis states s k ,  while the sequence of correct states is Sk. Any 
error event of length 1 can then be described by 1 state pairs, (SO, So),  . . . , (Sl, Sl), with 
So = S o ,  SI = gi, and Sk # S k  for 0 < k < I, i.e., the incorrect path must not touch 
the correct path. Associated with these paths are two symbol sequences a = [ao, al, . . . , ai] 
and & = [eo, el,. . . , & I .  The probability of an error event may be upper bounded by the 
Chernoff bound on the two codewords which the paths generate. We may therefore write 

j=O 

where C(aj,Gj) is the Chernoff bound on the two signals aj and t i j .  The last equality is a 
consequence of the interleaving process. The event error probability is now upper bounded 
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by the sum of the probability of all incorrect paths, i.e., 

dk -1 

where dk is the length of path IC. Let us now contrast the Chernoff bound for the Gaussian 
channel with that for the fading channel. In the Gaussian case 

i.e., the error probability is determined by the total Euclidean distance of each error path. 
In the fading case with side information we have 

a j k * h j k  

where d; equals d k ,  the length of the path less the number of matches ,  Le., the number of 
branches where a j k  = i i j k .  We call d i  the egec t ive  length of path k and d’ = min(dk) the 
eflective l eng th  of the code. The approximation is valid for SNR values > 6dB, which is 
usually the case for transmission over a fading channel. The signal to noise ratio, or SNR, 
is defined in the usual way as SNR = log1o(Eb/NO), where Eb is the average signal energy of 
the signal set in question, i.e., Eb = Cf- lp ;x : .  It becomes clear that the error performance 
in the fading case is dominated by the paths with the shortest effective length, i.e., d; = d‘ 
and among those by the one having the smallest product in the denominator, i.e., with the 
smallest produc t  dis tance.  While preparing this paper, it has come to our attention that 
Simon k Divsalar [51 have come up with a similar interpretation. 

CODES FOR THE FADING CHANNEL 

In this section we examine the performance on a fading channel of bandwidth efficient codes 
that were designed for the Gaussian channel and of some new codes designed for a fading 
channel. From equation (8) it is seen that parallel transitions in the code (d‘ = 1) are most 
detrimental to code performance and should be avoided. We now concentrate on trellis 
codes without parallel transitions. Ungerboeck [3] gives a list of optimal trellis codes based 
on convolutional codes. His list is given in table 1, together with their effective lengths d‘ 
and minimum product distance mpd. Table 2 gives a list of codes that will outperform the 
Ungerboeck codes on a fading channel. Codes in the two tables have to be compared on the 
basis of equation (8), i.e., the dominant parameter is d‘ since it determines the slope of the 
error bound. Among codes with equal d’, the one with larger mpd is superior. For example, 
for the v = 6 code the coding gain at an error probability of lo-’ is 8 dB. All the codes 
use an SPSK signal set. We have seen in section I1 that, unless perfect side information 
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is available, constant amplitude schemes are preferable. It also seems unlikely that larger 
signal sets that 8PSK will be used in the near future due to the problem of synchronizing 
the phase properly on fading channels. 

H(D)O H(D)’  H ( D ) 2  d’ mpd Y H(D)O H(D)’ H(D)2  d’ mpd 
2 5 2 - 1  2 2 5 2 1 2 1.17 
4 23 04 16 3 2.34 4 37 04 16 3 2.34 
5 45 16 34 2 8 5 77 14 16 3 2.34 
6 105 036 074 2 8 6 177 041 116 4 1.37 
7 203 014 016 3 2.34 7 - 
8 405 250 176 3 16 8 - 
9 1007 164 260 3 16 9 - 

- -  
- - -  

- - - -  
Table 1: Ungerboeck’s 8PSK codes Table 2: New codes 

CONCLUSIONS 
We conclude that bandwidth efficient coding is feasible on fading channels, but the impor- 
tant design parameter is no longer the Euclidean distance but two parameters, the effective 
length and the minimum product distance. Intuitively a good code in a nonuniform noise 
environment should try to spread the ”distance” between two codewords evenly over all 
the branches over which the codewords differ. The same basic idea is used in diversity 
transmission, which is usually employed to improve performance on fading channels. 
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